Spontaneous activity of isolated dopaminergic periglomerular cells of the main olfactory bulb.
نویسندگان
چکیده
We examined the electrophysiological properties of a population of identified dopaminergic periglomerular cells of the main olfactory bulb using transgenic mice in which catecholaminergic neurons expressed human placental alkaline phosphatase (PLAP) on the outer surface of the plasma membrane. After acute dissociation, living dopaminergic periglomerular cells were identified by a fluorescently labeled monoclonal antibody to PLAP. In current-clamp mode, dopaminergic periglomerular cells spontaneously generated action potentials in a rhythmic fashion with an average frequency of 8 Hz. The hyperpolarization-activated cation current (Ih) did not seem important for pacemaking because blocking the current with ZD 7288 or Cs+ had little effect on spontaneous firing. To investigate what ionic currents do drive pacemaking, we performed action-potential-clamp experiments using records of pacemaking as voltage command in voltage-clamp experiments. We found that substantial TTX-sensitive Na+ current flows during the interspike depolarization. In addition, substantial Ca2+ current flowed during the interspike interval, and blocking Ca2+ current hyperpolarized the neurons and stopped spontaneous firing. These results show that dopaminergic periglomerular cells have intrinsic pacemaking activity, supporting the possibility that they can maintain a tonic release of dopamine to modulate the sensitivity of the olfactory system during odor detection. Calcium entry into these neurons provides electrical drive for pacemaking as well as triggering transmitter release.
منابع مشابه
Innovative Methodology Spontaneous Activity of Isolated Dopaminergic Periglomerular Cells of the Main Olfactory Bulb
Puopolo, Michelino, Bruce P. Bean, and Elio Raviola. Spontaneous activity of isolated dopaminergic periglomerular cells of the main olfactory bulb. J Neurophysiol 94: 3618 –3627, 2005. First published July 20, 2005; doi:10.1152/jn.00225.2005. We examined the electrophysiological properties of a population of identified dopaminergic periglomerular cells of the main olfactory bulb using transgeni...
متن کاملSerotonin increases synaptic activity in olfactory bulb glomeruli.
Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determi...
متن کاملRegional distribution of protein kinases in normal and odor-deprived mouse olfactory bulbs.
Unilateral naris closure produced dramatic down-regulation of tyrosine hydroxylase (TH) gene expression in periglomerular dopaminergic neurons in the olfactory bulb. To explore molecular mechanisms of TH gene regulation, the present study investigated the regional distribution of protein kinase A (PKAalpha), protein kinase C (PKCalpha), and CaM kinases II (CaMKIIalpha, beta) and IV (CaMKIV) in ...
متن کاملInward Rectifier Potassium Current in Dopaminergic Periglomerular Cells of Mouse Olfactory Bulb
Chapter
متن کاملCholinergic modulation of dopaminergic neurons in the mouse olfactory bulb.
Considerable evidence exists for an extrinsic cholinergic influence in the maturation and function of the main olfactory bulb. In this study, we addressed the muscarinic modulation of dopaminergic neurons in this structure. We used different patch-clamp techniques to characterize the diverse roles of muscarinic agonists on identified dopaminergic neurons in a transgenic animal model expressing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 94 5 شماره
صفحات -
تاریخ انتشار 2005